Exploration spatiale:La sonde Solar Probe livre ses premières images du Soleil

La sonde Parker Solar, en route vers le Soleil, a livré ses premières images de notre étoile et étalonné ses instruments.

 

Tout se passe comme prévu pour Parker Solar Probe en chemin vers notre étoile. Un peu plus d’un mois après son départ, à une distance de 24 millions de kilomètres, la sonde a mis en route ses instruments et livré ses premières images. 

« Tous les instruments ont retourné des données, qui serviront à l’étalonnage mais aussi à donner des aperçus de ce que nous attendons d’eux près du Soleil afin de résoudre les mystères de l’atmosphère solaire, la couronne solaire », s’est félicité l’un des chercheurs de la mission, Nour Raouafi, du JHUAPL, le laboratoire de physique appliquée Johns Hopkins.

A terme, l’engin doit rentrer dans une orbite elliptique qui le fera passer à 6,16 millions de kilomètres, au plus près de l’astre. 

 

Photo d’ajustement de la sonde Parker montrant notre Voie Lactée.

Quatre instruments pour cerner notre étoile

De la taille d’une petite voiture et pesant un peu plus de 600 kilos, la dernière née des sondes de la Nasa a quitté la Terre le 12 août. Nommée en hommage au docteur Eugene Parker, physicien célèbre pour avoir prédit l’existence des vents solaires en 1958, elle doit s’approcher du Soleil sans s’y écraser. Pour ce faire, elle devra compter sur la gravité de Vénus, notre planète sœur, pour parvenir dans deux mois environ à son premier passage au plus près de l’astre.

Illustration de Parker Solar Probe approchant le soleil.© NASA/Johns Hopkins APL/Steve Gribben Illustration de Parker Solar Probe approchant le soleil.

Parker Solar Probe embarque quatre suites instrumentales, chacune étant composée de plusieurs appareils fournis par des équipes de différents pays. 

> FIELDS mesurera in situ, c’est à dire localement, le champ magnétique et le champ électrique pour tenter de répondre à « la grosse question »: « qu’est-ce qui chauffe la couronne solaire? », explique Thierry Dudok de Wit, chercheur CNRS à Orléans, responsable du magnétomètre de FIELDS. Cette couronne, la couche la plus externe de l’atmosphère solaire, qui s’étend jusqu’à plusieurs millions de kilomètres de l’étoile, dépasse le million de degrés alors que la surface du Soleil atteint « seulement » 6.000 °C. Un défi aux lois de la nature qui voudraient que, plus on s’éloigne de la source de chaleur, plus la température baisse.

> SWEAP (Solar Wind Electrons Alphas and Protons Investigation) aura pour mission de percer le mystère du vent solaire, le flux constant de particules ionisées qui se déplacent à plus de 500 kilomètres par seconde. « Les physiciens ignorent pourquoi le Soleil exhale le vent solaire et est subitement pris de violentes quintes de toux », note le CNRS.

> ISʘIS (Integrated Science Investigation of the Sun) dont le nom est composé du symbole ʘ qui représente le Soleil va se concentrer sur les ions lourds, particules de plus haute énergie. « Ce sont des particules très énergétiques, qui se dirigent vers la Terre à des vitesses phénoménales, proches de la vitesse de la lumière. Elles peuvent atteindre la Terre en 30 à 60 minutes », explique Thierry Dudok de Wit. « Le jour où l’on voudra aller sur Mars, il faudra pouvoir prédire ces éruptions de particules car elles peuvent avoir des effets mortels », ajoute-t-il.

> WISPR (Wide-Field Imager for Parker Solar Probe) est une caméra, de la taille d’une boîte à chaussures, qui observera le Soleil. Les astrophysiciens espèrent capter les éjections de masse coronale (des particules ionisées projetées à grande vitesse), les flux et reflux de matières, les fluctuations de toutes sortes. Jamais une caméra n’aura filmé notre étoile d’aussi près: à peine plus de 6 millions de kilomètres pour les passages les plus proches, sachant que la distance entre la Terre et le Soleil est de l’ordre de 150 millions de kilomètres.

La destination finale de l’engin est la couronne solaire, l’atmosphère de notre étoile. Les conditions qui y règnent sont extrêmes, avec une température comprise entre un et trois millions de degrés. Pour faire face à cette fournaise, la sonde est équipée d’un épais bouclier thermique en carbone, ainsi que d’un circuit de refroidissement ultra-perfectionné. Actuellement, les seules données que peuvent étudier les physiciens travaillant sur le sujet sont recueillies à distance.