Astronomie:Il existe bel et bien un trou noir supermassif au centre de notre galaxie

 

La grande précision de l’un des instruments qui équipent le Très Grand Télescope (VLT) de l’Observatoire européen austral (ESO) a permis d’effectuer les observations les plus détaillées à ce jour de la matière orbitant à proximité d’un trou noir, et par le fait même de confirmer la présence de l’un de ces monstres supermassifs au centre de la Voie lactée.

Des astrophysiciens européens ont utilisé l’instrument GRAVITY afin d’observer les émissions de rayonnement infrarouge en provenance du disque d’accrétion qui entoure l’objet massif situé au cœur de la Voie lactée : le trou noir Sagittarius A*.

Leurs observations ont montré la présence de gaz tourbillonnant à une vitesse inférieure à trois fois celle de la lumière le long d’une orbite circulaire située en périphérie de l’horizon des événements.

C’est la toute première fois que de la matière est observée si près du point de non-retour d’un trou noir.

De plus, les sursauts de luminosité observés tendent à confirmer que l’objet situé au centre de notre galaxie est bel et bien un trou noir supermassif.

Ces sursauts sont émis par la matière qui orbite à très grande proximité de l’horizon des événements qui entourent le trou noir.

La vidéo qui suit montre la matière orbitant à proximité d’un trou noir :

 

La matière qui compose le disque d’accrétion (l’anneau de gaz qui orbite autour de Sagittarius A*) peut se déplacer autour du trou noir en toute sécurité.

La vidéo qui suit montre un zoom vers le trou noir au centre de la Voie lactée :

 

 

Toutefois, si un objet s’en rapproche trop, il est condamné à traverser l’horizon des événements. Ainsi, l’ensemble des positions que la matière peut occuper sans se trouver irrésistiblement attirée par l’énorme masse centrale définit l’orbite stable la plus proche du trou noir. De cette orbite proviennent les éruptions observées.

Le spectacle de la matière orbitant autour d’un trou noir massif à quelque 30 % de la vitesse de la lumière est tout simplement époustouflant. – Oliver Pfuhl, Institut Max Planck dédié à la physique extraterrestre

« L’exceptionnelle sensibilité de GRAVITY nous a permis d’observer les processus d’accrétion en temps réel et avec des détails inégalés », explique M. Pfuhl.

le trou noir Sagittarius A*

En juillet dernier, des astrophysiciens européens se sont servis des observations de GRAVITY pour mettre en évidence les effets de la relativité générale d’Einstein sur le mouvement d’une étoile (S2) passant dans le champ gravitationnel intense de Sagittarius A*.

C’était la première fois que la théorie de la relativité générale d’Einstein se trouvait confirmée dans un environnement aussi extrême. Au cours du survol rapproché de S2, un intense rayonnement infrarouge fut également détecté.

“Nous avons suivi le mouvement de S2 avec attention, tout en observant Sagittarius A*. Lors de nos observations, nous avons eu la chance de détecter trois brillantes éruptions issues des environs du trou noir – il s’agissait d’une heureuse coïncidence!” – Oliver Pfuhl

De fortes éruptions

Cette émission issue d’électrons hautement énergétiques situés à très grande proximité du trou noir s’est traduite par la survenue de trois fortes éruptions de lumière. Ce phénomène est en accord parfait avec les prévisions théoriques concernant les points chauds en orbite autour d’un trou noir doté de 4 millions de masses solaires. Des éruptions qui sont censées provenir d’interactions magnétiques au sein du gaz très chaud orbitant à très grande proximité de Sagittarius A*.

« Cela a toujours été l’un de nos rêves, jamais pourtant nous n’aurions osé espérer qu’il se réalise si rapidement », se réjouit Reinhard Genzel, de Institut Max Planck consacré à la physique.

Ce résultat offre la confirmation du paradigme du trou noir massif. – Reinhard Genzel